Biomechanics of Living Organs

Hyperelastic Constitutive Laws for Finite Element Modeling

de

,

Éditeur :

Academic Press


Paru le : 2017-06-09



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
195,17

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. - Covers hyper elastic frameworks for large tissue deformations - Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue - Evaluates the physical meaning of proposed energy functions
Pages
602 pages
Collection
n.c
Parution
2017-06-09
Marque
Academic Press
EAN papier
9780128040096
EAN PDF
9780128040607

Informations sur l'ebook
Nombre pages copiables
60
Nombre pages imprimables
60
Taille du fichier
48742 Ko
Prix
195,17 €
EAN EPUB SANS DRM
9780128040607

Prix
195,17 €

Yohan Payan is Director of Research at the French National Center for Scientific Research (CNRS). In 1997, he received an award from the University of Grenoble for his doctoral research on the biomechanics of speech production. In 2012, the French Biomechanics Society awarded him the Senior Prize for his research on the biomechanics for computer-assisted surgery. His main research interests concern the biomechanical modeling of soft tissues and their integration into medical devices used to assist surgeons for planning or to guide them during surgery. The corresponding applications concern plastic and maxillofacial surgery, breast cancer treatment, neurosurgery, orthopedics and pressure ulcer prevention, based on organs or musculoskeletal models. He was a Research Affiliate at the Massachusetts Institute of Technology (1999, Boston, USA) and visiting professor at University of Chile (2004, Santiago de Chile) and University of British Columbia (2010, Vancouver, Canada). Yohan Payan is the co-head of the Biomechanics TIMC research team (Univ. Grenoble Alpes) and the Associate Editor of the Clinical Biomechanics journal (Elsevier).Jacques Ohayon is Professor of Mechanics at the Engineering school Polytech, Univ. Savoie Mont-Blanc, France. From 1985 to 1988, he was visiting fellow at the Biomedical Engineering Branch of the National Institutes of Health (NIH), Bethesda MD, USA. He received the 1998 Junior Prize of the French Biomechanics Society (SB) for his research on the biomechanics of the left ventricle. His current research focuses on the biomechanics of atherosclerotic plaque and the development of new clinical tools for imaging the elasticity of vulnerable plaques. From 2006 to 2007, he was visiting professor at the National Institute of Biomedical Imaging and Bioengineering at the NIH, USA. Jacques Ohayon was the Chairman of the SB, which also awarded him the Senior Prize in 2016 for his work on the biomechanics of coronary plaque rupture. In 2020, he was a visiting professor at Texas A & M University and conducted his research in the field of endothelial cell mechanobiology at the Houston Methodist Research Institute (HMRI). Since 2020, he is also Adjunct Professor of Cardiovascular Sciences at HMRI, Texas, USA.

Suggestions personnalisées