Recent Advances in Logo Detection Using Machine Learning Paradigms

Theory and Practice

de

, ,

Éditeur :

Springer


Paru le : 2024-05-30



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
158,24

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents the current trends in deep learning-based object detection framework with a focus on logo detection tasks. It introduces a variety of approaches, including attention mechanisms and domain adaptation for logo detection, and describes recent advancement in object detection frameworks using deep learning. We offer solutions to the major problems such as the lack of training data and the domain-shift issues.
This book provides numerous ways that deep learners can use for logo recognition, including: Deep learning-based end-to-end trainable architecture for logo detection Weakly supervised logo recognition approach using attention mechanisms Anchor-free logo detection framework combining attention mechanisms to precisely locate logos in the real-world images Unsupervised logo detection that takes into account domain-shift issues from synthetic to real-world images Approach for logo detection modeling domain adaption task in the context of weakly supervised learning to overcome the lack of object-level annotation problem.
The merit of our logo recognition technique is demonstrated using experiments, performance evaluation, and feature distribution analysis utilizing different deep learning frameworks.
The book is directed to professors, researchers, practitioners in the field of engineering, computer science, and related fields as well as anyone interested in using deep learning techniques and applications in logo and various object detection tasks.
 
 
 
Pages
119 pages
Collection
n.c
Parution
2024-05-30
Marque
Springer
EAN papier
9783031598104
EAN PDF
9783031598111

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
5100 Ko
Prix
158,24 €
EAN EPUB
9783031598111

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
30218 Ko
Prix
158,24 €



Suggestions personnalisées