Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models



de

,

Éditeur :

Springer


Paru le : 2021-03-31



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The book originates from the mini-symposium "Mathematical descriptions of traffic flow: micro, macro and kinetic models" organised by the editors within the ICIAM 2019 Congress held in Valencia, Spain, in July 2019. The book is composed of five chapters, which address new research lines in the mathematical modelling of vehicular traffic, at the cutting edge of contemporary research, including traffic automation by means of autonomous vehicles. The contributions span the three most representative scales of mathematical modelling: the microscopic scale of particles, the mesoscopic scale of statistical kinetic description and the macroscopic scale of partial differential equations.
The work is addressed to researchers in the field.
Pages
91 pages
Collection
n.c
Parution
2021-03-31
Marque
Springer
EAN papier
9783030665593
EAN PDF
9783030665609

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
3994 Ko
Prix
137,14 €
EAN EPUB
9783030665609

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
16865 Ko
Prix
137,14 €

Gabriella Puppo is professor of numerical analysis at Sapienza, Università di Roma. Previously, she has had positions at Università dell'Insubria and Politecnico di Torino. She obtained a PhD in Applied Mathematics at the Courant Institute of NYU. Her research interests range from scientific computing for hyperbolic and kinetic equations, to modelling of physical and social phenomena using kinetic theory and hyperbolic PDE's.

Andrea Tosin is full professor of Mathematical Physics at Politecnico di Torino, Italy. His main research interests consist in revisiting the classical methods and concepts of kinetic theory, such as Boltzmann-type collisional equations and Fokker-Planck asymptotics, to investigate emerging problems in the realm of interacting multi-agent systems. Applications include vehicular traffic, crowd dynamics and social systems.

Suggestions personnalisées