Improved Classification Rates for Localized Algorithms under Margin Conditions



de

Éditeur :

Springer Spektrum


Paru le : 2020-03-18



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Support vector machines (SVMs) are one of the most successful algorithms on small and medium-sized data sets, but on large-scale data sets their training and predictions become computationally infeasible. The author considers a spatially defined data chunking method for large-scale learning problems, leading to so-called localized SVMs, and implements an in-depth mathematical analysis with theoretical guarantees, which in particular include classification rates. The statistical analysis relies on a new and simple partitioning based technique and takes well-known margin conditions into account that describe the behavior of the data-generating distribution. It turns out that the rates outperform known rates of several other learning algorithms under suitable sets of assumptions. From a practical point of view, the author shows that a common training and validation procedure achieves the theoretical rates adaptively, that is, without knowing the margin parameters in advance.
Pages
126 pages
Collection
n.c
Parution
2020-03-18
Marque
Springer Spektrum
EAN papier
9783658295905
EAN PDF
9783658295912

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
12
Taille du fichier
1741 Ko
Prix
52,74 €

Ingrid Karin Blaschzyk is a postdoctoral researcher in the Department of Mathematics at the University of Stuttgart, Germany.?

Suggestions personnalisées