Microstructure and Properties of High-Temperature Superconductors



de

Éditeur :

Springer


Paru le : 2013-01-22



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the development, preparation and research of new materials. The new edition had been updated intensively, especially experimental investigations and modeling conductive and elastic properties of HTC superconductors have been added.
Pages
779 pages
Collection
n.c
Parution
2013-01-22
Marque
Springer
EAN papier
9783642344404
EAN EPUB
9783642344411

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
77
Taille du fichier
12288 Ko
Prix
147,69 €

I.A. Parinov
South-Federal Univ, Russia

Parinov is head of the Strength Physics and Fracture Mechanics lab and is head of Vorovich mechanics and applied Mathematics institute. He published over 130 publications in fracture resistance of structure heterogeneous materials, including HTSC.

Suggestions personnalisées