Data Science and Big Data Computing

Frameworks and Methodologies

de

Éditeur :

Springer


Paru le : 2016-07-05



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
145,19

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
Pages
319 pages
Collection
n.c
Parution
2016-07-05
Marque
Springer
EAN papier
9783319318592
EAN EPUB
9783319318615

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
31
Taille du fichier
2550 Ko
Prix
145,19 €

Suggestions personnalisées