System Identification Using Regular and Quantized Observations

Applications of Large Deviations Principles

de

, ,

Éditeur :

Springer


Collection :

SpringerBriefs in Mathematics

Paru le : 2013-02-11



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
?This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular.  By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
Pages
95 pages
Collection
SpringerBriefs in Mathematics
Parution
2013-02-11
Marque
Springer
EAN papier
9781461462910
EAN EPUB
9781461462927

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
9
Taille du fichier
1321 Ko
Prix
52,74 €